Goal: Learn about pneumatic systems, what works, what doesn’t and... find a suitable replacement for my 66 pound compound bow

What is a “SkyHook”?
What are Common Skyhook Hunting Methods?
Why Pneumatic?
Basics of a Pneumatic Skyhook Launcher
- Pressure Tank
- Trigger Mechanism
- Barrel
- Projectile
- Retrieval Mechanism

Theory
Tests
Summary
Reference: search on: Pneumatic Antenna Launcher Images
https://www.google.com/search?q=pneumatic+antenna+launcher+pvc+bullet&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwir6Zjpv_7aAhVCG1kKHrmfAuMQ7AikINIA
What is a “SkyHook”?

• Wikipedia has a number of definitions:
 • Names of Books, Movies, Bands, Companies, Aircraft, Balloons
 • Technology: Climbing Hooks, Space Elevator
 • Mechanism for Flying Aircraft to Snag Payloads from the Ground

• My Definition:
 • I simply *made up this name* for a means of *hanging a rope over a tree limb*!

• Typical Use Scenario (SkyHook Hunting):
 • Launch projectile connected to fishing line / reel over support (tree limb)
 • Use fishing line to pull up twine or small rope
 • Use twine to pull up larger rope
 • Use rope to pull up antenna wire

• Connecting to Tree:
 • Over Small High Limbs (springy)
 • Spring Between Skyhook and Antenna, Keeps Tension
 • Pulley Between Skyhook and Antenna, Weight to Keep Tension
Common Skyhook Hunting Methods

1) Armstrong Method – Throw Projectile Over Support (Tree Limb)
2) Slingshot – Shoot Projectile Over Support
3) Casting Rod – Cast Projectile Over Support
4) **Bow and Arrow – Shoot Projectile Over Support**
5) Crossbow – Shoot Projectile Over Support
6) Explosive Charge Gun – Shoot Projectile Over Support
7) Drone Air Drop – Drop Projectile Over Support
8) **Pneumatic Air Cannon – Shoot Projectile Over Support**
Why Pneumatic?

1) Armstrong Method – Very Simple
 but: requires a strong throwing arm (not me, I was not much of a baseball player)

2) Casting Rod – OK Idea
 but: needs a skilled fisherman (not me, I was never a fisherman)

3) Slingshot – Good Idea
 but: considered a weapon in some jurisdictions now (in Mass at the time)
 I considered this, but the bow and arrow seemed a better choice

4) Bow and Arrow – Excellent Idea
 immediate reuse of arrow
 but: requires strength to pull back bow (I’m getting too old for this)
 considered a weapon in some jurisdictions now
 I got mine in Dracut, MA (1986), walked right in, bought 66 pound compound hunting bow and arrows

5) Crossbow – Very Good Idea
 immediate reuse of arrow
 crossbow is “cocked” instead of pulling on string, strength not needed
 but: considered a weapon in some jurisdictions

6) Explosive Charge Gun – Good Idea
 but: complex, requires explosive charges, may be difficult to come by
 need to reload after each use, definitely considered a weapon

7) Drone Air Drop – Excellent Idea
 but: complex, requires expensive drone apparatus

8) Pneumatic Air Gun – Very Good Idea
 no strength required
 but: need to reload after each use
 limited vendor source, or make your own

Pneumatic Skyhook Launcher

01-Dec-2018
Basics of a Pneumatic Air Cannon

1) Goal:
 1) Experiment with Different Tanks, Triggers, Barrels, Projectiles
 2) Learn the issues of working with PVC and Brass Fittings for Pneumatic Applications
 3) Create a replacement for the compound hunting bow

2) Pressure Tank
 1) Pressure Gauge
 2) Relief Valve for Excessive Pressure
 3) Inlet Valve
 4) Size = Diameter \(2r\), Length \(L\), Volume = \(\pi r^2 L\)

3) Trigger
 1) PVC Ball Valve
 2) Brass Ball Valve
 3) Pneumatic Thumb Lever Air Gun
 4) Electric Sprinkler Valve

4) Projectile
 1) Tennis Ball
 2) PVC Bullet
 3) Arrow

5) Barrel
 1) Size to Match Projectile

6) Retrieval Mechanism
 1) Reel – cheap fishing reel $25
 2) Line – 20-50 pound
Basics of a Pneumatic Skyhook Launcher

Pressure Tank

Trigger

Barrel

projectile

Shrader Valve

Pressure Gauge

Line

REEL

Such items are available on the WEB and at HamFests... But...I love to experiment and homebrew
Pressure Tank #1 – Brass Fittings

Pressure Tank

Pressure Gauge

Shrader Valve

01-Dec-2018

Pneumatic Skyhook Launcher
1) Goal: to make tanks interchangeable, also triggers and barrels
2) Solution: use brass subassembly for inlet valve and pressure tank
3) Benefit: pipe tape works OK with brass fittings – cheap $1.00
4) Benefit: combination pressure gauge / relief valves exist - $20.00
5) Benefit: interchangeability preserved:
 1) Pressure Tanks
 2) Trigger Mechanisms
 3) Barrels
 4) Projectiles
6) Problem: Inadequate Air Flow!
 Eventual Test Showed that it took 15 Seconds to Empty 80 Pounds of Air (Not Good Enough)
 Brass fittings and pipe are too small, airflow too restricted for this application!
Pressure Tank #2 – ALL PVC

Pressure Tank

Pressure Gauge

Shrader Valve

Pressure Gauge
Pressure Tank #2 – ALL PVC - Issues

1) Goal: to make tanks interchangeable, also trigger and barrel
2) Solution: use screw in ¼ NPT nipples for pressure guage and Shrader valve
3) Use 7/16" drill to cut holes for ¼ NPT brass nipple ($2)
 1) Tap hole in PVC using ¼ NPT tap – ½ outer diameter (OD)
 2) ½ NPT dual male nipple (½ OD) – be sure there is a hex handle for wrench
 3) TEE section – triple female ¼ NPT
 4) Pressure gauge ($5-15)
 5) Shrader (tire inlet) valve ($3)
4) Issue: you must glue these parts carefully
 or they will leak
5) Transition from 4 inch to 1 inch pipe tapered
to promote laminenter flow rather than turbulent.
6) Pressure Tank 2 had leaks where exit pipe joined cap
Pressure Tank #3 – PVC + Brass Ball Valve

Pressure Tank

Shrader Valve

Pressure Gauge

01-Dec-2018
Pneumatic Skyhook Launcher
Pressure Tank #3 – ALL PVC - Issues

1) Solution:
 1) Reuse Pressure Tank #2, new cap, discharge pipe, gauge, Shrader valve
 2) Use single subassembly (TEE section) for inlet valve and pressure gauge

2) Use 7/16 drill to cut holes for ¼ NPT brass nipple ($2)
 1) Tap hole in PVC using ¼ NPT tap – ½ outer diameter (OD)
 2) ¼ NPT dual male nipple (½ OD) – be sure there is a hex handle for wrench
 3) TEE section – triple female ¼ NPT
 4) Pressure gauge ($5-15)
 5) Shrader (tire inlet) valve ($3)

3) Issue: you must glue these parts carefully or they will leak

4) Transition from 4 inch to 1 inch pipe tapered to promote laminar rather than turbulent flow.

5) Pressure Gauge with center back mount better than edge mount, face always visible when tightening
1) Ball Valve
 1) PVC Cheap $1-5
 2) Brass Expensive $22
 3) Easy to Install in PVC Only Systems
 4) PVC - Sloppy imprecise, valve sticky
 5) Brass – Smooth precise, use WD-40
 6) Fast Air Flow, very successful

2) Pneumatic Thumb Lever Air Gun
 1) Cheap $5-10
 2) Easy to Install in Brass Fitting Systems
 3) Reasonably precise triggering
 4) ¼ NPT inch brass pipe input
 5) 1/8 NPT inch brass pipe output
 6) Limited Air Flow, insufficient pressure to launch

3) Electric Sprinkler Valve
 1) Complicated, not KISS
 2) More Expensive $20-30
 3) Easy to install in PVC Systems
 4) Precise triggering
 5) Requires 3 x 9 volt batteries and push button
 6) Did not hold pressure (defective?)
 further investigation warranted

01-Dec-2018
Projectiles

1) Tennis Ball
 1) Readily Available
 2) Soft – Not as harmful as hard projectile
 3) Large Cross Section
 May bounce off branches and trees
 4) Need to Add Weight
 5) Need to Attach Retrieval Line

2) PVC / Wooden Bullet
 1) Need to Construct
 2) Hard – could be harmful
 3) Medium Cross Section
 4) Easy to Add Weight
 5) Easy to Attach Retrieval Line

3) Arrow
 1) Readily Available, Walmart
 2) Hard / Sharp – could be harmful
 3) Small Cross Section
 shoot through branches
 4) Need to Add Weight
 5) Easy to Attach Retrieval Line
 6) Attach Cork or Bottle Stopper
Projectiles – Adding Weight

1) Weight Requirements: 1-5 ounces total (3 nominal)

2) Tennis Ball
 1) Fill with metal hardware or stones

3) PVC / Wooden Bullet
 1) Attach metal bolt (wood)
 2) Fill with sand / stones (PVC)
 3) Fill with metal bolt (PVC)
Projectiles – Adding Weight - Arrows

1) Weight Requirements: 1-5 ounces including arrow (3 nominal)
 1) Weight improves downward travel through branches and leaves
 2) Weight decreases acceleration to avoid breaking fishing line

2) Arrow
 1) Outer Diameter varies: 3/8, 5/16
 2) Wrap dummy tip with solder / tape
 1) Use Large Gauge, even Acid Core
 2) Wrap with electrical tape to secure
 3) Used with original arrow / compound bow
 3) Attach brass fittings to tip #8 – 32 tpi thread
 1) Arrow: 1 oz.
 3) ¼ NPT Cap (drilled): ½ oz.
 4) ¼ NPT 2 ½ Pipe Section – Outside Thread: 1 1/8 oz.
 5) ¼ NPT Female Coupling – Inside Thread: 5/8 oz.
 6) Modify NPT pipe by cutting to size, weight <= 1 1/8
 7) Possible Weights (including arrow):
 1) 1 oz. – arrow alone
 2) 1 1/8 oz. – arrow with machine screw
 3) 1 5/8 oz. – arrow, screw, cap
 4) 2 7/8 oz. – arrow, screw, cap, extender
 5) 3 5/8 oz. – arrow, screw, cap, extender, coupling
 6) 4 7/8 oz. – arrow, screw, cap, 2x extender, coupling

4) Attach metal fragment (rod) to arrow
 1) Use Brass or Aluminum Rod (easy to drill and tap)
 2) Extends length of arrow
Projectiles – Attaching to Line

1) Tennis Ball
 1) Stitch Through Outer Cover

2) PVC / Wooden Bullet
 1) Eyehook

3) Arrow
 1) Drill Hole in Tail
1) PVC Pipe Sizes - are specified by the Inside Diameter – SCH 40/80

1) 0.50” – OD = 0.840”
2) 0.75” – OD = 1.050”
3) 1.00” – OD = 1.315”
4) 1.25” – OD = 1.660”
5) 1.50” – OD = 1.990”
6) 2.00” – OD = 1.375”
7) 2.50” – OD = 2.875”
8) 3.00” – OD = 3.500”
9) 4.00” – OD = 4.500”

2) Projectile must fit inside the barrel

1) For PVC Bullets OD of Bullet Cap must be ID of Barrel
2) W1VD uses ¾ inch PVC Pipe and Caps for bullet, 1 ¾ PVC Pipe for Barrel

Pneumatic Skyhook Launcher

01-Dec-2018
Retrieval Mechanism

1) Line in ZigZag pattern on ground perpendicular to trajectory
 1) Line will not get tangled
 2) Good for larger size lines such as twine or rope

2) Fishing Line on Reel
 1) Use 20-50 pound line (typically 30)
 2) Tradeoff on size versus length that will fit on reel
 3) Use moderate quality reel (Walmart $20-40)
 4) Important Specification: length of line versus strength of line (size)
 5) Mount Reel on Barrel
 6) Mount Reel on Ground Anchor
Pressure Tests

1) First Test: Tank #1, Brass Fittings
Result: Insufficient Air Flow to Launch Projectile
Thumb Valve Trigger took 10 seconds to discharge air (80 pounds)

2) Second Test: Tank #2, Leaking
Needed Swimming Pool to View Leak Bubbles, large tank
Wednesday Afternoon: It Was Raining (no work outdoors)
Thursday Afternoon: Discovered Pipe Not Glued
Applied Glue to Pipe Connected to Pressure Tank
Leaking persisted at joint between pipe and tank

3) Third Test: Tank #3, Leaking
New Tapered Transition from 4 inch to 1 inch in sections
Pressure test AOK at 50 pounds with cap
Pressure test NG with Electric Sprinkler Valve (defective?)

4) Fourth Test: Tank #3, Success
Replaced Electric Sprinkler Valve with Brass Ball Valve
Pressure test AOK
very slow leak at Pressure Gauge Fitting (fixable): 1 PSI/minute or less

01-Dec-2018
Initial Ballistic Test

• Initial Test with 40 PSI
 • Original arrow with rubber stopper
 • Elevation angle 60°
 • 90 feet height
 • 120 feet down range
 • Drill 3/8 inch hole in rubber cork
 • Split one side of cork
 • Use electrical tape to fasten cork together
 • Use electrical tape to prevent cork from sliding on arrow when propelling arrow
 • Much better performance: two real corks, slightly smaller diameter in front #8, larger in back #10
Theory – Pressure vs Height

Conservation of Energy

Before Launch, Kinetic Energy, \(E_k \) and Potential Energy, \(E_p \), are Zero
Launch Pressure adds Kinetic Energy, \(E_k \), to Arrow
At Apogee of Trajectory, Vertical Kinetic Energy, \(E_k \), is Zero, potential energy, \(E_p \), is maximum
Potential Energy, \(E_p \), at Apogee is Height \(\times \) Weight of Arrow \(\text{lb} \)
Kinetic Energy, \(E_k \), after Launch is Pressure \(\text{PSI} \times \text{Area sq-in} \times \text{Barrel Length ft} \)
\[E_k = E_p \] Conservation of Energy, less barrel friction and air resistance losses
Weight of Arrow = 4 ounces = \(\frac{1}{4} \) lb
Length of Barrel = 2 ft
Diameter of Cork = 1 inch, \(\frac{3}{4} \) sq-in \((\frac{1}{2})^2 \times 3.14 \)
Height \(\text{ft} = (\text{Pressure psi} \times \text{Area sq-in} \times \text{Barrel Lth ft}) / \text{Weight lb} \)
Height = (60 x 0.75 x 2) / (1/4) = \(6 \text{ ft/psi} \times 60 \text{ psi} = 360 \text{ ft} \)
Height = 360 ft
Ballistic Tests

<table>
<thead>
<tr>
<th>PSI</th>
<th>Height</th>
<th>Range</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>120</td>
<td>70</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

Empirical Ballistics Formula:
Height (ft) = 2 x PSI + 20 ... *simplify to Height = 2 x PSI*

PSI = (Height (ft) – 20) / 2 ... *simplify to PSI = Height / 2*

Note: this cannot be true at low pressures since 0 PSI = 20 feet height... no way!

Measurements were *estimates* based on visual observation, comparison with 70 ft HF tower

Theoretical Ballistics Formula:
Height (ft) = 6 x PSI
PSI = Height (ft) / 6
Summary – Lessons Learned

• PVC Fittings Require Careful Glue Application with Primer
• Tapered Straight Transition Pressure Tank to Exhaust Pipe Reduces Turbulence
• Brass Ball Valve works Smoothly with Rapid Air Flow
• Brass Thumb Trigger Valve and Small Brass Pipe has Insufficient Flow
• Sprinkler Trigger Valve Leaks (is it defective?)
• Attaching Fishing Line to Arrow Has Little or No Effect on Ballistics
• 20 Pound Fishing Line Sometimes Breaks need 30 or 40 pound depending on pressure
• RYOBI Portable Compressor Pressurizes to 70+ PSI, Can be Carried in Tool Bag to Woods
• Best Arrow Performance: Two corks not rubber stoppers 1 inch OD at tail #10 taper, 5/8 inch OD mid-arrow #8 taper
 Rubber stoppers create too much friction, leave residue inside barrel

• Empirical Ballistics Formula:
 Height (ft) = 2 x PSI + 20 … simplify to Height = 2 x PSI
 PSI = (Height (ft) – 20) / 2 … simplify to PSI = Height / 2
 Note: this cannot be true at low pressures since 0 PSI = 20 feet height… no way!
 Measurements were estimates based on visual observation, comparison with 70 ft HF tower

• Conclusion:
 2/3 of launch kinetic energy lost in barrel friction, air flow resistance, and other factors